Another Well-Preserved Impact Crater
NASA/JPL-Caltech/UArizona
Another Well-Preserved Impact Crater
ESP_025450_1595  Science Theme: Impact Processes
Shown here is a stereo pair (see the anaglyph) of a well-preserved impact crater about 6 or 7 kilometers wide from rim to rim. By well-preserved we mean that the crater has a sharp rim, deep cavity, impact morphologies preserved down to scales of tens of meters, and little sign of infilling or degradation by a range of processes (other impacts, volcanism, tectonism, icy flow, aeolian erosion and infill, etc.).

When seen at full HiRISE resolution, almost all craters on Mars do show some modification such as subsequent smaller impacts, wind-blown deposition and/or erosion, and downslope movement of material on steep slopes.

We have imaged hundreds of well-preserved impact craters on Mars ranging from 1 meter to more than 100 kilometers wide. These targets are of great interest for multiple reasons: first, we want to better understand impact cratering, a fundamental surface process. Second, such craters often contain good exposures of bedrock in the steep walls and, if the crater is large enough, in the central uplift. Just like terrestrial geologists are attracted to good bedrock outcrops like road cuts, planetary geologists are attracted to well-preserved craters.

Third, the steep slopes often reveal active processes, such as formation of gullies, boulder falls, and slope streaks that could form in a variety of ways. Some of these active processes could be related to water, since the crater may expose lenses of ice or salty water, or create deep shadows that trap volatiles, or expose salts that can extract water from the air.

Written by: Alfred McEwen  (1 February 2012)

This is a stereo pair with ESP_024738_1595.
 
Acquisition date
31 December 2011

Local Mars time
14:52

Latitude (centered)
-20.428°

Longitude (East)
59.146°

Spacecraft altitude
256.8 km (159.6 miles)

Original image scale range
26.7 cm/pixel (with 1 x 1 binning) so objects ~80 cm across are resolved

Map projected scale
25 cm/pixel and North is up

Map projection
Equirectangular

Emission angle
15.9°

Phase angle
69.5°

Solar incidence angle
58°, with the Sun about 32° above the horizon

Solar longitude
50.7°, Northern Spring

For non-map projected images
North azimuth:  96°
Sub-solar azimuth:  46.1°
JPEG
Black and white
map projected  non-map

IRB color
map projected  non-map

Merged IRB
map projected

Merged RGB
map projected

RGB color
non-map projected

JP2
Black and white
map-projected   (553MB)

IRB color
map-projected   (319MB)

JP2 EXTRAS
Black and white
map-projected  (274MB)
non-map           (281MB)

IRB color
map projected  (96MB)
non-map           (250MB)

Merged IRB
map projected  (125MB)

Merged RGB
map-projected  (119MB)

RGB color
non map           (246MB)
ANAGLYPHS
Map-projected, reduced-resolution
Full resolution JP2 download
Anaglyph details page

ADDITIONAL INFORMATION
B&W label
Color label
Merged IRB label
Merged RGB label
EDR products
HiView

NB
IRB: infrared-red-blue
RGB: red-green-blue
About color products (PDF)

Black & white is 5 km across; enhanced color about 1 km
For scale, use JPEG/JP2 black & white map-projected images

USAGE POLICY
All of the images produced by HiRISE and accessible on this site are within the public domain: there are no restrictions on their usage by anyone in the public, including news or science organizations. We do ask for a credit line where possible:
NASA/JPL-Caltech/UArizona

POSTSCRIPT
NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., manages the Mars Reconnaissance Orbiter for NASA’s Science Mission Directorate, Washington. The HiRISE camera was built by Ball Aerospace and Technology Corporation and is operated by the University of Arizona.