Avalanche Clouds
NASA/JPL/University of Arizona

Avalanche Clouds
ESP_016423_2640  Science Theme: Climate Change
PortuguêsItaliano



WALLPAPER

800  1024  
1152  1280  
1440  1600  
1920  2048  
2560  

HIFLYER

PDF, 11 x 17 in  
This HiRISE image shows at least three isolated clouds of particles near a steep cliff in the northern polar region of Mars.

These clouds, rolling or hovering close to the ground yet reaching up tens of meters high (up to 180 feet), are likely the result of an avalanche or fall of mostly carbon-dioxide frost. The frost clings to the scarp in the darkness of winter and may be disrupted by sunlight and thermal processes with the coming of spring. The cliff, approximately 700 meters (2000 feet) high is made up of layers of water ice with varying dust content, roughly similar to the polar ice caps on Earth.

On top is bright white carbon-dioxide ice and frost. Last year, HiRISE was monitoring this area for changes in frost patterns as spring progressed - it was quite surprising and very exciting to find an avalanche in progress (e.g. PSP_007338_2640)! This year, we were ready to capture more.

Targeting this scarp as well as others around the edge of the north polar icy layered deposits will help determine if this process is a characteristic one in Mars' cycle of seasons, including the period of year it is active and how wide-spread around the region it is. Several such events occurred earlier this year at this same scarp (e.g. ESP_016173_2640), and several more were also seen at a few other scarps (e.g. ESP_016228_2650) spread around about one-third of the circumference of the polar region.

Looking at all of the individual instances of avalanches from all of the images will also allow us to piece together a sequence of snaphots of the whole avalanche process, from beginning (a stream of material falling down the cliff face) to end (lingering puffy clouds). Based on this year's observations, these events happen mostly in the middle of spring, roughly equivalent to April to early May on Earth. And, they are indeed more widespread than just this one scarp. All together, it seems this is a regular spring process at Mars' north pole that may be expected every year - avalanche season! This information, in conjunction with the results of numerical modeling of the behavior of the materials involved, will help us find out what is causing these dramatic events.

Written by: Patrick Russell   (7 April 2010)



 Image Products: All image links are drag & drop for HiView, or click to download
JPEG
Grayscale: map projected  non-map
IRB color: map projected  non-map
Merged IRB: map projected
Merged RGB: map projected
RGB color: non-map projected

JP2 DOWNLOAD
Grayscale: map-projected (1787.2 MB)
IRB color: map-projected (818.3 MB)

JP2 EXTRAS
Grayscale: map-projected  (723.0 MB),
non-map  (578.2 MB)
IRB color: map projected  (185.5 MB)
non-map  (605.0 MB)
Merged IRB: map projected  (410.6 MB)
Merged RGB: map-projected  (410.7 MB)
RGB color: non map-projected  (517.5 MB)

ADDITIONAL IMAGE INFORMATION
Grayscale label   Color label
Merged IRB label   Merged RGB label
EDR products

About color products (PDF)
HiView main page

 Observation Toolbox
Acquisition date:27 January 2010 Local Mars time: 1:11 PM
Latitude (centered):83.827° Longitude (East):235.325°
Range to target site:318.6 km (199.1 miles)Original image scale range:31.9 cm/pixel (with 1 x 1 binning) so objects ~96 cm across are resolved
Map projected scale:25 cm/pixelMap projection:Polarstereographic
Emission angle:0.3° Phase angle:67.0°
Solar incidence angle:67°, with the Sun about 23° above the horizon Solar longitude:43.5°, Northern Spring
For non-map projected products:
North azimuth:117° Sub-solar azimuth:313.7°
For map-projected products
North azimuth:34.72°Sub solar azimuth:233.2°

Context map

Usage Policy
All of the images produced by HiRISE and accessible on this site are within the public domain: there are no restrictions on their usage by anyone in the public, including news or science organizations. We do ask for a credit line where possible: Image: NASA/JPL/University of Arizona
Postscript
For information about NASA and agency programs on the Web, visit: http://www.nasa.gov. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems is the prime contractor for the project and built the spacecraft. The HiRISE camera was built by Ball Aerospace and Technology Corporation and is operated by the University of Arizona. The image data were processed using the U.S. Geological Survey’s ISIS3 software.